17 research outputs found

    Histo-blood group gene polymorphisms as potential genetic modifiers of infection and cystic fibrosis lung disease severity

    Get PDF
    Background: The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. Methods and Principal Findings: Clinical information and DNA was collected on >800 patients with the ΔF508/ΔF508 genotype. Patients in the most severe and mildest quartiles for lung phenotype were enrolled. Blood samples underwent lymphocyte transformation and DNA extraction using standard methods. PCR and sequencing were performed using standard techniques to identify the 9 SNPs required to determine ABO blood type, and to identify the four SNPs that account for 90-95% of Lewis status in Caucasians. Allele identification of the one nonsynonymous SNP in FUT2 that accounts for >95% of the incidence of nonsecretor phenotype in Caucasians was completed using an ABI Taqman assay. The overall prevalence of ABO types, and of FUT2 (secretor) and FUT 3 (Lewis) alleles was consistent with that found in the Caucasian population. There was no difference in distribution of ABH type in the severe versus mild patients, or the age of onset of Pseudomonas aeruginosa infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. Conclusions and Significance: Polymorphisms in the genes encoding ABO blood type, secretor or Lewis genotypes were not shown to associate with severity of CF lung disease, or age of onset of P. aeruginosa infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation

    Novel variation at chr11p13 associated with cystic fibrosis lung disease severity

    Get PDF
    Published genome-wide association studies (GWASs) identified an intergenic region with regulatory features on chr11p13 associated with cystic fibrosis (CF) lung disease severity. Targeted resequencing in n=377, followed by imputation to n=6,365 CF subjects, was used to identify unrecognized genetic variants (including indels and microsatellite repeats) associated with phenotype. Highly significant associations were in strong linkage disequilibrium and were seen only in Phe508del homozygous CF subjects, indicating a CFTR genotype-specific mechanism

    Genetic modifiers of lung disease in cystic fibrosis

    Get PDF
    BACKGROUND: Polymorphisms in genes other than the cystic fibrosis transmembrane conductance regulator (CFTR) gene may modify the severity of pulmonary disease in patients with cystic fibrosis. METHODS: We performed two studies with different patient samples. We first tested 808 patients who were homozygous for the ΔF508 mutation and were classified as having either severe or mild lung disease, as defined by the lowest or highest quartile of forced expiratory volume in one second (FEV 1), respectively, for age. We genotyped 16 polymorphisms in 10 genes reported by others as modifiers of disease severity in cystic fibrosis and tested for an association in patients with severe disease (263 patients) or mild disease (545). In the replication (second) study, we tested 498 patients, with various CFTR genotypes and a range of FEV 1 values, for an association of the TGFβ1 codon 10 CC genotype with low FEV 1. RESULTS: In the initial study, significant allelic and genotypic associations with phenotype were seen only for TGFβ1 (the gene encoding transforming growth factor β1), particularly the -509 and codon 10 polymorphisms (with P values obtained with the use of Fisher's exact test and logistic regression ranging from 0.006 to 0.0002). The odds ratio was about 2.2 for the highest-risk TGFβ1 genotype (codon 10 CC) in association with the phenotype for severe lung disease. The replication study confirmed the association of the TGFβ1 codon 10 CC genotype with more severe lung disease in comparisons with the use of dichotomized FEV 1 for severity status (P=0.0002) and FEV 1 values directly (P=0.02). CONCLUSIONS: Genetic variation in the 5′ end of TGFβ1 or a nearby upstream region modifies disease severity in cystic fibrosis

    Impurity Distribution Behavior in Caprolactam Extraction with Environmentally Benign Mixed Solvents

    Get PDF
    In a previous study a solvent mixture of heptane containing 40 mass % heptanol was selected as an alternative in the industrial extraction of caprolactam to replace benzene, toluene, or chlorinated hydrocarbons. This work reports the equilibrium distribution ratio of caprolactam and four model impurities of organic nature, namely, cyclohexanone, aniline, n-methylcaprolactam, and cyclohexane-carboxamide, comparing the mixed solvents with toluene as a reference. The resulting phase equilibria were interpreted using the equilibrium stage model. Based on these calculations it was found that, compared to toluene, the co-extracted fraction of cyclohexanone and aniline was higher, that of n-methylcaprolactam was comparable, and that of cyclohexane-carboxamide was lower using the mixed solvent. Overall, the mixed solvent reduced the fraction of co-extracted impurities by almost 10

    A BAC Transgene Expressing Human CFTR under Control of Its Regulatory Elements Rescues Cftr Knockout Mice

    No full text
    Small-molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR) biology show promise in the treatment of cystic fibrosis (CF). A Cftr knockout (Cftr KO) mouse expressing mutants of human CFTR would advance in vivo testing of new modulators. A bacterial artificial chromosome (BAC) carrying the complete hCFTR gene including regulatory elements within 40.1 kb of DNA 5′ and 25 kb of DNA 3′ to the gene was used to generate founder mice expressing hCFTR. Whole genome sequencing indicated a single integration site on mouse chromosome 8 (8qB2) with ~6 gene copies. hCFTR+ offspring were bred to murine Cftr KO mice, producing hCFTR+/mCftr− (H+/m−) mice, which had normal survival, growth and goblet cell function as compared to wild-type (WT) mice. Expression studies showed hCFTR protein and transcripts in tissues typically expressing mCftr. Functionally, nasal potential difference and large intestinal short-circuit (Isc) responses to cAMP stimulation were similar in magnitude to WT mice, whereas small intestinal cAMP ΔIsc responses were reduced. A BAC transgenic mouse with functional hCFTR under control of its regulatory elements has been developed to enable the generation of mouse models of hCFTR mutations by gene editing for in vivo testing of new CF therapies. © 2019, The Author(s)

    PLCB3 cooperates with the Toll-like receptors' signaling cascade enhancing P.aeruginosa-dependent IL-8 expression in bronchial epithelial cells

    No full text
    An excessive neutrophilic inflammation, initially orchestrated by bronchial epithelial cells and amplified by chronic bacterial infection with P.aeruginosa, leads to progressive tissue destruction in the lungs of patients affected by Cystic Fibrosis. The discovery of novel molecular targets may help to develop more effective anti-inflammatory drugs. In this issue, we report that association study conducted on a cohort of F508del homozygous cystic fibrosis patients with either severe or mild progression of lung disease, showed the implication of the nonsynonymous single-nucleotide polymorphism C2534T of the phospholipase C-\uf0623 (PLCB3) gene in the neutrophil recruitment. Studies performed in IB3-1 and CuFi-1 bronchial epithelial cells exposed to P.aeruginosa revealed that PLCB3 is implicated in ATP releasing from the cells and subsequent activation of purinergic receptors, intracellular calcium (Ca2+)i signaling, activation of the protein kinase C\uf061 and C\uf062 and of the nuclear transcription factor NF-\uf06bB p65. Thus, the pro-inflammatory pathway regulated by PLCB3 acts by potentiating the Toll-like Receptors\u2019 signaling cascade leading to enhanced IL-8 expression in bronchial epithelial cells. Concluding, PLCB3 may represent an interesting molecular target to attenuate the excessive recruitment of neutrophils without completely abolishing the immune response
    corecore